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ABSTRACT

The linearized hydrodynamic equations for storm surges are solved in analytic form for a very simple model
basin and an arbitrary field of wind and pressure to show that a solution can be obtained as an integral of the product
of the atmospheric forcing function and an influence function whose value tends to zero with increasing time lags.
In practical cases this solution can be computed as a weighted sum of the meteorological observations during a short
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period before the storm surge observation.

A finite difference scheme for a slightly more general basin is then developed and the solution given formally in

terms of a polynomial involving both vectors and matrices.

It is shown that this solution is equivalent to the analytic

solution and that both are equivalent to a linear function of the meteorological measurements of wind and pressure

which must be used to obtain a description of any actual forcing function for storm surges.

The technique can be

generalized to provide the solution for basins of almost any shape.
The difficulties and uncertainties involved in the hydrodynamiec solution are discussed, and the advantages of
using a statistical method to determine the solution of the problem when sufficient data are available are shown.

1. INTRODUCTION

The rapid development of high-speed stored-program
computers during the last decade has led to a rapid
growth of numerical methods in meteorological research.
Two distinct lines of approach have been followed. One
begins with the hydrodynamic equations. These are
truncated and modified as necessary to meet the require-
ments of mathematical and computational stability and
the storage capacity of the computer being used while
still retaining some of the original physical aspects of the
problem. The other approach is statistical in origin and
is based on the consideration of a large number of possible
predictors. The weights assigned to the predictors are
determined from a multiple regression program. Usually
a subset containing the best or most efficient predictors
is selected from the original set for practical predictions.

Of course, the two systems are not entirely independent
for many of the dynamic models contain terms analogous
to the Reynolds stress terms which must be evaluated
empirically and some degree of physical and dynamic
reasoning is usually employed in the selection of the
possible predictors in the statistical models.

Both approaches have several distinet advantages.
The numerical integration of the hydrodynamic equations
may be continuously generalized toward a better descrip-
tion of nature as computers become more versatile and
man acquires a better understanding of the computa-
tional process. This approach has the capability of
revealing much useful information about the physical
processes involved, even when the ultimate prediction
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is not usefully accurate. However, the result can be
no better than the assumptions employed in translating
the physical description of nature into mathematical
terms. It can be considerably worse, for the computa-
tional process may lead to a growth or decay of energy
which can be confused with hydrodynamic instability
or the damping effect of {riction.

The statistical approach has much less ability to reveal
the underlying physical processes involved in the phenom-
ena and has much less capability for generalization to
approach a better description of nature. However, the
ultimate forecast system derived, usually in the form of
a regression equation or diagram, leads from the input
data to the forecast by a much shorter route than that
required for the dynamical approach and one can be
reasonably sure of making the most efficient use of the
data and theory at his disposal. Computational in-
stabilities can develop here too, but they are much less
common. The statistical program may and often does
have the ability to discriminate against inferior assump-
tions, and sometimes makes use of implicit data, hidden
correlations not clearly recognized, which serve to improve
the predictions. The agreement between the results of
the statistical calculations and the observations may be
misleading. The data used in this type of analysis,
usually time series, violate many of the basic assumptions
of classical statistical theory and the results of the analy-
sis may be more or less significant than the classical
theory indicates. Tests with independent data are
clearly required to establish the acceptability of any
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system derived in this manner. The sophistication of
the system should not exceed that justified by the quality
and quantity of the data available for development. Omne
must remember that an accidental stratification of data
can be as damaging to the resultant prediction system
as a deliberate attempt to force the results.

In designing a forecast system for practical application
by either method it is essential that the investigator keep
in mind the quality and quantity of the input data likely
to be available under operational conditions, or which
can reasonably be made available through established
procedures. Even a perfect computation scheme will
have little value for forecasting if it requires input data
that cannot be made available until after the event one
wishes to predict.

2. THE STORM SURGE PROBLEM

The storm surge 1s defined as the difference between
the actual water level during a storm and the level which
would have existed in the absence of a storm. Storm
surge research is generally based on the vertically inte-
grated form of the hydrodynamic equations, usually in
a linearized form. Several alternate forms of the equa-
tions have been employed, but the most significant
difference between the various forms is in the degree of
linearization and the convention adopted for dealing with
bottom stress. Only the linearized form of the equations
will be considered in this paper and thus the most general
assumption that can be made about the bottom friction
is to assume that it is proportional to some weighted sum
of the surface stress and the mean current velocity.
That is

Te=ku'+0r, (1)
where 7, Is the bottom stress; 7, is the surface stress;
u! is the mean current speed along the streamline; and
k and 6 are constants, either or both of which may be
assumed to vanish. Derivations which justify this
assumption have been given by Reid [9] and Weenink [12].

The equations of motion and continuity then take the
form

L vagp Pt v——2 Lot (1977, @)
YU +D gt V==L Lo (1—pyrr, @)
B
17y
010U OV _ "

dy

where U and V are the transports along the # and ¥
axes; f is the Coriolis parameter, f=2Q sin ¢; ¢ is latitude;
Q is the earth’s angular speed; % is the height of the free
water surface above its equilibrium position; ¢ is the
acceleration of gravity; D=D(z,y) is the equilibrium
depth of the fluid; p, is the atmospheric pressure; p,
is the density of the water; %7, and Y7, are the surface
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wind stresses along the z and y axes. A derivation is
given by Welander [13].

No form of the boundary condition which is rigorous
from both the physical and mathematical points of view
is known. It is usually assumed, however, that no fluid
passes through the solid boundary when this is a coast;
if the region being investigated is a bay or harbor, a
portion of the boundary is fluid. This is usually treated
by assuming that the height or gradient of height remains
constant at the fluid boundary. Other conditions are
sometinmes used. There are several alternative methods
of stating the initial conditions. All are equivalent to
assuming that two of the four quantities, the height, the
derivative of the height with time, the velocity, or the
derivative of the velocity with time, are known at the
initial time.

3. THE INFORMATION AVAILABLE FOR DETERMINING
A SOLUTION

The form of equations (2)—(4) above imply that the
pressure gradient and wind stress fields are known as
continuous functions of space and time. This is never
the case. Pressure observations are usually obtained in
the form of total pressure at fixed points in space. Con-
tinuous observations are possible, but the data are usually
readily available for computations only as point functions
in time as well as in space. Information about the pres-
sure gradient is therefore available only as a linear
function of the absolute pressures at two nearby locations.

No satisfactory system for direct observations of the
wind stress over water has yet been developed, nor is
there any universal agreement about the proper expres-
sions for relating the wind stress to other atmospheric
variables that are directly observed. The most common
assumption 1s that wind stress is proportional to the
square of the wind speed at some standard elevation
above water, but even when this convention is adopted
two other troublesome details arise. Wilson [15], [16]
lists the results of 47 determinations of the coefficient of
proportionality as adjusted to a standard height of 10
meters. The resulting values of the drag coeflicient for
strong winds (about 40 kt.) vary from 1.5X107% to 4X107%.
For light winds (about 10 kt.) the range is 0.4X107
to 6.2%107% But this does not tell the whole story.
Very few observations of the wind at 10 meters above the
sea are available, and almost none of these was obtained
during high winds. Therefore the wind velocity over
water must be based on an extrapolation of values ob-
served over land, visual estimates by sailors, or approx-
imations based on some assumption about the relationship
between the surface wind over water and the pressure
gradient. In the last case one must also consider the
general deficiency in pressure observations over the sea.

Although the quadratic relation between the wind
speed and wind stress is more widely adopted than any
other, its derivation is not entirely satisfactory. Sutton
[10], [11], Dryden [2] and a few workers in this field prefer
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to use some exponent ol the wind speed other than two
(Neumann [7]). There is some empirical evidence to
support the assumption of a linear relationship between
the wind speed and the wind stress. This may result
from some real differences between laboratory and field
conditions or it may result from the fact that the relative
error in wind speed squared is double that in the first
power of the wind speed.

At best, the pressure or wind velocity or both are known
only at a small number of diserete points, usually at
discrete times, 1, 3, or 6 hours apart. The continuous
or quasi-continuous specification of the pressure and wind
velocity or wind stress must be obtained from this limited
information by some type of interpolation. This is some-
times accomplished by fitting analytic functions to the
available empirical data. Although such functions are
frequently nonlinear in the space variables, they are
usually linear in the observations. More often linear
interpolation is used. If wind observations from land
based anemometers are used, speeds must be increased
somewhat to account for the decreased friction over
water. If something akin to the gradient wind is used,
speeds must be decreased to account for the friction that
does exist at the surface. Thus after the wind speed or
pressure gradient has been obtained, two empirical
corrections are needed, one to adjust the observed value
to that which would be expected at the standard height
over water and one to convert this value of the wind speed
into wind stress.

The standard mathematical treatment of time de-
pendent differential equations requires a knowledge of the
initial conditions over the whole space. Actually this is
never available for the practical storm surge problem. One
must “make do”” with observations of the initial conditions
at one or a few points near the solid boundary. Thus it 1s
necessary to find a solution in which the error resulting
from an inadequate description of the initial conditons
will not increase with time.

It should be apparent from the above that any attempt
to fit a solution of the hydrodynamic equations to observed
data will contain a number of assumptions and approxi-
mations,

4. SOLUTION METHODS

It can be shown that any method of solving equations
(2)-(4) with observed data inputs is equivalent to the
construction of a regression equation expressing the storm
surge at any designated location as a linear function of the
initial conditions and the meteorological observations
after the initial time. Moreover a practical method must
not suffer too much from the lack of detail in the initial
conditions and should not require the use of large volumes
of data which add little skill to the predictions. One
might suspect that if a best set of coeflicients exists for
this regression equation it must have the desired character-
istics. Proving that this is so is somewhat laborious and
will be attempted in three stages.

MONTHLY WEATHER REVIEW

333

In the first stage the one-dimensional motion in a
rectangular basin of constant depth will be considered.
This will be used to show the general character of the
solution including the tendency for the error resulting
from an inadequate knowledge of the initial conditions to
decrease with time., The solution will be expanded into
a series of eigenfunctions. Unfortunately, it is not easy
to show that the series of eigenfunctions has suitable
convergence qualities. An appeal to mathematical in-
duction will be made to show that the principal qualitative
features of the solution must hold for basins of much more
general character. The method used is reasonably direct
and is not readily generalizable to all of the practical
problems.

In the second stage a one-dimensional numerical model
of much greater applicability will be developed. This
approach will lead to a solution in the same form as that
obtained from the first analysis but will be free of any
consideration of eigenfunctions, thus eliminating the
formal problem of convergence arising from the first
step. The method will be readily generalizable to two
dimensions and will provide some additional insight into
the problems involved. Unfortunately, it is not well
adapted to a display of the general character of the solution
or to a prool that the error resulting from inadequate
knowledge of the initial conditions tends to zero with
increasing time,

Both of the above approaches lead to the same form for
the regression equation. With this form well established,
a statistical process of curve fitting can be used for an
evaluation of the coefficients. This procedure gives less
physical insight than either of the first two methods of
solution, but if a sufficient amount of past data is available,
it requires fewer assumptions about the physics of the
problem than either of the first two methods and is much
simpler from a computational point of view. Subject to
the assumptions that are common to both the dynamic
and statistical analysis, the statistical derivation gives
assurance of maximum use of the available data. Errors
may arise when the resultant solution is applied to the
predictions of water levels produced by storms which
differ greatly from those used in the derivation, but
neither of the other two approaches eliminates this
possibility. An understanding of all three derivations
should minimize the possibility of an unsuspected error
of this kind.

ANALYTIC SOLUTION

The equations of motion and continuity (2) and (4)
suitable for a one-dimensional analysis may be written
in the form:

U oh  k D op, . ’
T TpU=—. 5, T )
Oh , OU '
ot Tor—" )
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Ttis easy to show that equation (4’) is satisfied by defining
h and » in terms of a new variable ¢, as follows

=—0yfdx  U=0dy/ot (5)

Substitution of (5) into (2’) gives

bzlﬁ a%p k 31//
D@ Do *®Y (©)
where
sta,0)=—2 Lo 1—g) =, @

If the boundary conditions are taken in the form
U0,)=U(L,t)=0, y(x,t) may be expressed in the form

nwx

P(2,1) =Y+ 20 A,(t) sin T (8
where the A,(f) are given by
,, k 0A,  (nr
atz +D ot +< gDA =B, (t) (9)

and

B,(t)=% f o(x’,t) sin (10)

as can be shown by the usual procedures of Fourier
analysis.

Equation (9) can be recognized as a standard form of
the equation for a forced harmonic oscillator with linear
damping. The solution can be given in the form

An(t) :‘xne_kl/ﬂ) cos a,(t— tn)

¢
+(—Tl~f B, (t")e ¥t gin g, (t—¢")dt’  (11)

=00 (F)~(2n)

where a, is the amplitude and #, the phase of any oscil-
lation of mode n which may have been in existence at
time?=0. The factor exp (—kt/2D), which is independent
of n, in the first term on the right shows that the effect of
the initial conditions will tend toward zero with increasing
time. In practice one can insure that this will be true
within a very short time by starting the calculation during
a period in which the water level is almost constant for a
prolonged time so that all «, are small.

If the initial conditions are neglected, the important
part of the solution can be obtained in the form

=tk S L[ [ e

nwwxr
)
= a2

sin on(t—t’)Bn(t’)dt’] sin

and as ¢ is defined so that hA=—0y /02, we have
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h(t)—~— 20—

t
[f e~ ke—t2D
Tn 0
nmwx

sin an(t—t’)Bn(t’)dt’] cos —5=

(13)
The B,(@) defined by equation (10) may be interpreted
as weighted space means of the atmospheric forcing term

o(x,1).
Mt)=—F 3 ;—‘ I:L‘ Wn(t’)Bn(t’)dt’] cos n_zgc (14)

where

W, (t—t")==e *~1"2P gin ¢,(t—1’) (15)
The W, (') may be interpreted as weighting functions
which show the effect of the atmospheric forcing terms
applied at time ¢’ on the height of the free surface at time .
It can be seen that each W, is equal to zero when ¢
equals zero, rises to a maximum, and then oscillates around
the value zero with decreasing amplitude. In the deriva-
tion of equation (13) the depth and width have been as-
sumed constant in order to obtain a separation of the
space and time variables and a relatively simple form of
the analytic solution. It is well known, however, that
the solution of a differential equation is a continuous func-
tion of its coefficients. Therefore the actual solution,
however difficult to obtain in analytic form, should differ
but little from (14) if the depth and width were allowed
to change slowly. That is to say, any small change in the
law governing the depth and width will produce only a
small change in the solution. This process can be repeated
continuously. The application of this principle does not
give us any quantitative information about the solution
for natural basins, but it does show us that any solution
to the problem must be topologically similar to a weighted
sumn of terms similar to those specified in equation (14).
The derivation presented is given only for one space dimen-
sion, but the two-dimensional problem reduces to this
when there are no significant variations in the y direction.
The continuation process can be extended into two dimen-
sions as well as into the domain of variable coeflicients.
This line of reasoning is essential to the subsequent devel-
opment only in that it shows that the initial conditions
and the force applied in the distant past cease to have any
significant effect on the solution after some finite time.
This could have been established more directly by an
appeal to physical reasoning as showing that any attenu-
ating factor such as friction ultimately eliminates all of
the initial energy of a system.

The above line of reasoning is useful, however, when we
come to evaluate the coefficients to be determined em-
pirically in a later section, for it does give us some definite
ideas about the possible shapes for the weighting functions
which can arise in practical problems, at least to the point
that some solutions which may arise from poorly selected
empirical data can be rejected as unsuitable.
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Equation (10) for the B,(t) is derived with the assump-
tion that ¢(z, {) is known as a continuous function for the
entire basin being considered. This is never the case and
¢(x,t) must be replaced by some sort of interpolation pro-
cedure which will supply approximations to the true
value, wherever these are required, which are consistent
with the known values from observing stations. Normally
one would use a linear interpolation scheme and in this
case the integral can be replaced by a finite sum of the type

Bn(t)=; ;.1 xP5, (1) (16)
4

where ¢; .(t) is the value of ¢(x,t) at station j and time ¢.
The subscript % is used to identify the component of the
forcing term. k=1 corresponds to the wind stress in the
x direction and k=2 corresponds to the atmospheric
pressure at station 7. Pressure gradients will be deter-
mined implicitly from the pressure values at two or more
stations. The expression can be extended to two dimen-
sions by letting £=3 identify the wind stress along the y
axis. The subscript 7 is used to identify the observation
station. The coeflicients required in (16) can be derived
from the assumed interpolation formula, wind stress law,
wind stress coeflicient, and friction coeflicients, at least
for the simple case on which the analytic solution is based.

The integrals in equations (12), (13), and (14) are
derived under the assumption that the B,{¢) are known
as continuous functions of time. In practice one is gen-
erally restricted to observations taken at discrete times,
usually no less than one hour apart. Therefore it is gen-
erally necessary to interpolate between the observation
times to define a continuous function. Thus the integral
in equation (14) as well as that involved in equation (10)
can be expressed no better than as a finite sum of the type

ft W, (t—t") By(t))dt =32 b 32 @y 5, by s (t—iA)
0 i J
’ )

where Af is the interval between observations, and 7 is the
number of time intervals between the meteorological
observation and its effect on the water level.

Combining equations (13), (16), and (17), we can now
write the equation for the water level at any designated
point as

h(zo,t)=; Ci. ;.15 x(t—1AL) (18)
>
3
where
. K ﬁ ) ] nwXy
ci,j,k——§ Io, bi wt; x, n COS T (19)

Convergence of the sum with respect to 7 is assured from the
form of the integral in (12). Convergence with respect
toj and k is assured because there are only a finite number
of observation stations to be considered and only two or
three meteorological quantities to be considered at each

MONTHLY WEATHER REVIEW

335

station. Convergence with respect to n can be inferred
from the form of equation (10) but cannot be rigorously
established for all possible ¢(z,¢) by this development.
The coefficients ¢;, ;, x can be computed from the assumed
interpolation formulae and assumed wind stress law and
wind stress and friction coeflicients.

NUMERICAL SOLUTION

Several methods are available for approximating equa-
tions (2) and (4) by finite differences. Perhaps the most
direct and most frequently employed is presented by the
set

Urr—up
2At

Ry —hT k
+gH, S e Ur=Fp
(20)
b '—hp~!
2At

Ulyu—Uly
Ax

+ =0

where U is volume transport;

_H, op,

14‘m:
" pu Ox

+(1—0)7s; x=1[Az, t=mAL.

This form of the equations is readily obtained from Platz-
man [8] or Welander [13]. Tt will be assumed that proper
stability eriteria are maintained.

1f

Hyy—H, 3
— g, <

(21)
it is possible to eliminate U between these equations to
obtain

AE\?
g2 2hphe =1 44g (55 ) Hopsapa—he)
—H (R — Ry +2kAL (AP — Ry~ /H,

A\?
—4 (35) Pro—Frod @)

If H(xz) has continuous slope, as it does in almost all
practical cases, condition (21) can always be achieved by
choosing sufficiently small Az. Thus condition (21) does
not result in any formal difficulty in dealing with arbi-
trary depths. It may lead to serious computational
difficulties if the equations are solved by conventional
methods.

Since U has been eliminated in equation (22) it is
necessary to restate the boundary conditions, (U(0)=
U(L)=0), as functions of h. This can be accomplished
by setting U=0 in equation (2’) and using the definition
of F7 given below (20) to obtain

0h(0)

gH (0) WZF‘?

oh(LAx)

gH (LAx) >z
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and expressing A at the boundaries by

m__pm__ aj’ "
LESY X [bx]o Ax

or]™
7= 7?,—1‘*‘[5;][1 Ax

Other expressions could be used, but these appear to be
the simplest.

Equation (22) expresses h™"? as a function of 4 for four
earlier time periods. However, the first term in square
brackets can be recognized as the equation obtained by
approximating 0%h/0t? by the central differences of central
differences, that is by the expression

(23)

O%h_ byt 2hp-Hhp?
4A¢*

ot2

A better approximation could be expected from the more
usual expression
O%h  hpt'—2hphrt

ot At?

Taking advantage of this equivalence to reduce the five-
term recursion formula to one involving only three time
steps and collecting terms, one obtains the prediction
equation

B = A B A O+ G +DFY (24)

where:
2kAL
H,

A,=—(4—2kAt/H)/R,
E=—4g(AtY/Az?) H - y/R,

R1=4+

O 5449 &) (oot Hi) [/,
G =—4g(At/A) H 114/ R
D,=4(At¥Ax)/R,

p=Fy— Fiy  0<I<L

spp— Fp

——

(25)

An even more compact expression can be obtained by
introducing the matrices 4, B, and D whose elements
Ay, B, Dy, , are defined as follows:,

A0,1=A1
i, z:Az
AL,L—l:AL—l

Ay, ,=0 for all other values of [ and p
Bo,0:E1
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B0,1:01

Bo,2:G1
Bl,l-l:El

B =C;, 0<I<L
Bl,l+1:Gl
BL,L—2:EL4
BL,L~1:OL—1
BL,L:GL—I

B, ,=0 for all other values of { and »
Dy, y=—2Ax/gH,

DO, 1:])1
Dl,l:Dl
DL,LA:DL—l

])L.L—_—QAI/{]HL
D, ,=0 for all other values of [ and p

This permits the prediction equation to be rewritten in
the form

R t= AR Bh "+ D*F™ (26)
where the A’s and the *F are vectors, and 4, B, and D
are matrices. If A(x) is known for m=0 and 1, and the
meteorological variables are known, A(x) for any later
time period can be found by repeated application of
formula (26). It has been shown above that after a
sufficient period of time the effect of the initial conditions
vanishes. Moreover, one usually begins a set of storm
surge predictions at a time at which the initial disturbance
is at a minimum. Therefore, we may disregard the
initial conditions and consider only the influence of the
atmosphere on a body of water which is initially at rest.
A few iterations of (26) are shown below:

Rl D*Fo0

hE=BD*F°+D*F!

RB=(A+B)D*F°+BD*F 4 D*F?

h=(AB+BA+B)D*F°=- (A+B)D*F' - BD*F*--D*F?
(27)

Tt is seen that the vector A™*! takes the form

h Tl =Afi*Fm—i (27/)
where ' is a matrix polynomial generated by the re-
peated application of equation (26). The first few M? as
taken from (27) are

M'=D
M?*=BD
Me=(A+B)D
M!‘=(AB+BA+B)D

If one considers the time variations of & at a single
value of x, say w, equation (26) can be written in the
form

hxe, 1) =2 an TZ, Crx *F, (t—mAL) (28)

Equation (28) is similar in form to equation (18)
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except that it does not have to be summed over 7. The
coefficients a,, and ¢, ; can be computed from the form of
the finite difference equations and the assumptions made
about the wind stress and bottom friction. Sumimation
over j, the locations from which empirical data are
available, is replaced by summation over [/, the mesh
points in space. The number of mesh points required
in the calculation is independent of the number of lo-
cations from which data are available and is usually
much larger. The forcing function at the additional
points must be obtained from some type of interpolation
between the observing stations. Summation over ¢, the
observation intervals, is replaced by summation over m,
the computation intervals. The requirements of compu-
tational stability place an upper limit on the computa-
tional interval which is usually much smaller than the
interval between observations. Again the missing em-
pirical data must be supplied by some type of interpo-
lation.

If we interpolate in tiine and space, to obtain the values
of *F(x,t) required for the numerical solution but not
supplied by the observations, we obtain

P = mAL) =D dy s m (= 14A,E)

i
J

(29)

Subscripts ¢ and o have been added to the A’s in this

equation to distinguish between computation and ob-
servation intervals. This distinction is not essential to
any of the other equations. The coeflicients can be
computed from the interpolation formula used to supply
the meteorological data at each mesh point and compu-
tation time from the more limited meteorologieal
observations.
By combining equations (28) and (29) we obtain

h(xg,)=27] €1,m Z di, 1,5, 1, nd 5,1 (E— A1) (30)

where €; n=0mnC; x

The interpolation process, although necessary for the
numerical solution of the hydrodynamic equations, adds
no new information. Therefore we may formally sum
over [ and m to obtain

b, £) =23 fi. 5.l .0(t—1AL) (31)

where
fi.J,k:lel el,mdi,j.k, 1,m

m

Equation (31) is similar in form to (19) and (28). Like
(19) it is to be summed only over the observation points
and observation times. Like (28) it does not have to be
summed over n. However, it contains all of the data
available for a determination of the solution, but none of
the auxiliary functions required by the process of solution.
We may therefore assume that this is the result that we
would have obtained by summing equation (19) over n if
we had been able to do so. Moreover, this derivation
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does not require any unreasonable assumptions about
the bottom profile. The practical difficulties which may
have attended the stipulation of mesh lengths short
enough to satisfy condition (21) have now been formally
eliminated. The coefficients f;;; could be computed
from the hydrodynamic equations and the assumptions
necessary for a numerical solution to equations (27) and
(4’). However, many of the assumptions, which must
be introduced into this process, although reasonable, are
in no sense unique. Their use must be justified a pos-
teriori by comparison of the computation results with
observed data. Therefore the coeflicients f; ; deduced
from theory and assumptions are likewise not unique,
and as their ultimate justification must come from em-
pirical evidence, one is led to consider the possibility of
obtaining them directly from the empirical data.

THE REGRESSION EQUATION

With the form of the regression equation (31) well
established from physical and mathematical considera-
tions, we now consider the evaluation of the coefficients.
As stated above, the theoretical derivation of the coeffi-
cients, although possible, is based on a number of unveri-
fiable assumptions. Several sets of assumptions, whose
relative validity cannot be determined a priori, appear
reasonable. Consequently there is no method for deter-
mining that any set of coeflicients derived from theoretical
considerations will be the best possible. However, if a
sufficiently long period of record is available it is possible
to use the methods of linear algebra to compute the
cocefficients from known values of the storm surge and the
meteorological variables. This procedure would be ideal
if the theory were exact and a sufficient number of exact
observations were available. Unfortunately, the theory
is only an approximation and many of the observations
are not as representative as one would like. Therefore, it
is desirable to use many more equations than coefficients
and to obtain a solution in a least squares sense. But this
procedure is identical with the solution of a problem in
multiple regression analysis, and the original hydro-
dynamic problem has been converted into a statistical
problem.

This procedure has at least two other attractive features.
The hydrodynamic equations (2) and (4) are greatly
simplified and fail to recognize some physical causes for
rises 1n sea level that are correlated with pressure and
wind stress in much the same way as is the volume
transport. For example, equation (2) implies that the sea
level will rise in regions of low pressure because of mass
transport. In many areas significant rises also occur due
to heavy rainfall. This is also correlated with low pres-
sure, and a correction for the effects of rainfall is included,
although concealed, in the coefficients of the pressure term
in equation (24). Evidence is accumulating that waves
breaking against the coast can make a significant contribu-
tion to the total storm surge along coasts exposed to
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violent wave action. This phenomenon is significant
only when high waves are approaching the coast; that is,
for the most part only during strong onshore winds.
Thus an average correction for this condition also is
included in the coefficients for the wind effect in equation
(24); the correlation procedure therefore makes some
allowances for our lack of physical knowledge. It would
be possible to eliminate these effects from the correlation
procedure if exact expressions for them were available.
In the meantime the implicit recognition of these factors
by the coefficients derived by the statistical procedure is
useful byproduct of the procedure.

Moreover, as we have seen, the dynamic calculations
require a redundancy in the input data, as the number of
calculation points for which data are needed is generally
much greater than the number of points for which data are
available, and the time interval employed in the calcula-
tions is generally much smaller than the interval between
successive observations. Any interpolation procedure
used must generate some errors in the data field, and no
matter how small these may be they cannot be expected to
lead to any systematic improvement in the predictions.

A significant advantage of the regression method of
computing storm surges is that the number of locations
and time periods for which predictions are made is deter-
mined by the availability and real need for data and not by
the needs of the computational system. A second
advantage is that the regression equation uses only the
observed data and does not require any interpolation in
either time or space. This great reduction in arithmetic
may make the regression technique desirable even when
no past data are available for a statistical determination
of the coefficients. In this case the coeflicients for the
regression equation can be computed by using the numeri-
cal solution of the hydrodynamic equations.

Several methods of accomplishing this could be sug-
gested and a detailed discussion of this problem will be
deferred to a later paper.

5. EXTENSION TO TWO SPACE DIMENSIONS

The extension of the analytic solution to two space
dimensions is not difficult if one is willing to restriet
attention to rectangular basins of constant depth, and
neglect the rotation of the earth. Tt can be accomplished
for several other basins of rather simple geometry. How-
ever, a general solution which is applicable to natural
basins is not available. Even the simplest two-dimen-
sional solution cannot be obtained from the foregoing
development in a straightforward manner.

The numerical solutions can be obtained in a straight-
forward manner from the finite difference form of equa-
tions (2)-(4). A finite difference expression for these
equations is given by Welander [13]. The extension of
the statistical model to two dimensions can be accom-
plished simply by extending the range of the index %k
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to include the wind stress in a direction normal to the
& axis.

The algebra required for the computation of the matrix
polynomials required for a proof of the validity of the
method, similar to that given above, would be formidable
but it could be carried out. For the present we shall
satisfy ourselves by pointing out that in each stage of
the calculations, A(z,y,t+At) is computed as a linear
function of other quantities, each of which is defined in
a similar manner until ultimately every variable is a
sum of the forcing functions for earlier times. Thus it
should be possible in principle to compute the coefficients
relating A (z,t) to the sums of the available meteorological
observations for earlier times.

The statistical method, in practice, is very similar to
the influence method described by Welander [13] and
the empirical method deseribed by Wilson [16]. The
motivation is, however, quite different, and it is believed
that the foregoing derivation reveals more of the under-
lying physical and mathematical principles behind the
method, and that an understanding of these principles
should guide one to a better selection of the possible
predictors. Some of the uncertainties mentioned by
Wilson [16] and other uncertainties discussed by Wilson
and Harris [17] should be resolvable by the derivation
given above.

6. ALTERNATIVE DERIVATIONS OF THE BASIC
EQUATION

Two theoretical derivations ol equation (31) are given
above. Onemay arrive at the same destination by several
other routes. For example, one may regard the body of
water being considered as a linear filter whose input is
the time series observations of the pertinent meteorologi-
cal variables and whose output is the variation of water
level at any selected location bordering on or within the
water body. If the problem is viewed in this way the
techniques discussed by Wiener [14] are applicable.
Wiener’s technique was developed for phenomena in
which future events are only incompletely determined
by past events because of fundamental physical principles.
An example of a phenomenon of this type mentioned by
Wiener is the displacement of a molecule of fluid because
of Brownian motion. Another problem familiar in physi-
cal oceanography is that of providing an exact de-
scription of sea state, h(x,y,f), at time #; when: an exact
description, i(x,y,t;) is given for time ;.

The problem we are considering should be completely
deterministic if complete information about the initial
conditions, forcing functions, the stress laws, and stress
coeflicients were known exactly, and if the linear theory
were completely valid. However, a certain indetermi-
nacy exists because of incomplete knowledge in the initial
conditions, forcing functions, physical constants, and
fundamental theory; and the practical situation is very
much like that described by Wiener. If this paper were



Avugust 1962

being prepared primarily for statisticians or communica-
tion engineers, the groups addressed by Wiener, it might
be better to use the theory of time series as a starting point.
Certainly that theory can contribute significantly to an
extension of the results we have obtained. However,
this paper is being developed for hydrodynamicists and
civil engineers, and the development given above appears
to the author to be the most natural.

Equation (11) can be recognized as a convolution
integral involving the applied force and the eigenfunction
of the basin being discussed. This fact could be used
as another starting point for the development of the
theory. Without doubt other approaches could be used
and perhaps some of them have been. However, the
author is not acquainted with any other development
which shows that an exact equivalence can be developed
between a multiple regression technique and the solution
of a set of linear differential equations whose nonhomo-
geneous terms contain empirical functions.

7. COMPUTATION OF THE COEFFICIENTS BY THE
LEAST SQUARES METHOD

At least one additional advantage can be sought in the
statistical evaluation of the regression coefficients. The
meteorological data contain a great deal of redundancy
even when data are considered only at the scheduled
observation times -and existing weather stations. One
would suspect that. predictions nearly as good as the best
obtainable could be derived from a regression equation
which requires only a small fraction of the available data.
It is desirable to take advantage of this possibility in
making routine predictions, as reducing the amount of
arithmetic not only reduces the amount of work and time
involved, but also reduces the chance of an error in the
calculations. Statisticians have been studying the prob-
lem of determining the best set of predictors from a
larger set of possible predictors for several years. A
systematic procedure for accomplishing this, called a
screening procedure, was described by Wherry [18].
Later papers were published by Lubin and Summerfield
[4]. The procedure was applied to meteorological prob-
lems by Miller [5] in an unpublished paper presented in
1956. He discussed the technique in considerable detail
in a report [6] which received limited distribution in 1958.
The idea received additional development and application
by several other meteorologists during the next few years
and two papers giving a description of the mathematical
procedures involved appeared in 1959 (Aubert, Lund,
and Thomasell [1]; and Klein, Lewis, and Enger [3]).
The heart of the method as applied in meteorology is a
high-speed computer program for computation of a set of
regression equations based on an increasing number of
independent variables until some cut-off point is reached.

Several versions of the technique have been .used.
The essential feature, common to all is that the computer
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is first used to compute the means, variances, and co-
variances of a large number of variables, some of which
are regarded as “independent” but one or more of which
are assumed to be linear functions of some of the others.
In considering a particular dependent variable, the in-
dependent variable most highly correlated with this is
determined and the regression equation determined by
this variable is computed. In the next step, the second
independent variable is selected in such a way that the
resulting regression equation will be the best that could
be obtained with the first wvariable already specified.
Then the third variable is selected such that it will make
the maximum improvement with the first two variables
already selected. The process is repeated until all vari-
ables have been considered or until it is previously ter-
minated by some programmed decision process. Variables
which contribute no improvement to the system are
discarded.

If the theoretical relation between the dependent and
independent variables is not known, the process is usually
terminated after a designated number of coeflicients have
been computed or when the value of the theoretical
significance of the additional variables drops below some
previously specified value. If the theoretical form of the
regression is known from other considerations, as in this
problem, it is worthwhile to consider all possible predic-
tors, but for practical considerations one may wish to use
only the most efficient predictors for practical prediction
and the most complete equations only for further theoreti-
cal work.

The basic screening program has been altered to accept
meteorological data in the form of hourly records of
pressure, wind direction, and speed as available in the
punch card decks at the National Weather Records
Center; to compute the wind stress along two orthogonal
axes; and to lag these in an arbitrary manner as appears
to best satisfy the requirements of the above development
within the memory capacity of the IBM 7090. It is
practical to consider predictions for more than one location
and to consider the consequences of suppressing certain
data which may not be available at the time of the fore-
cast during a single examination of the data. ,

A report of the application of this procedure to practical
storm surge problems is in preparation for publication.
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